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I. Introduction

A theory of integration with respect to a bimeasure was initiated by Morse and
Transue [7-9] and further developed by Thomas [11]. For these authors, bimeasures are
continuous bilinear functionals on C C(El) x C C(EZ)’ where C C(Ei), i=1,2, are the usual
spaces of continuous functions with compact support on the locally compact Hausdorff
spaces Ei’ i=1,2.  More recently, motivated by the problem of finding a Fourier
representation for the covariance of a second order process, this theory has been expanded
by Niemi {10] and Chang ai}d Rao [2,3]. Along the bilinear functional approach, the set
function approach has now also been studied as well as the Banach valued case developed
by Ylinen {13].

In the works mentioned above the authors consistently impose, in their definition of
integrability, a Fubini type condition which cannot usually be bypassed. In Section II we
show that, a suitable and natural restriction of the definition of integrability implies a
stronger Fubini type property. In Section III , we study the spectral domain of

harmonizable processes.

II. Vector Bimeasure Integration

Let X be a Banach space over F = R or € and let (E,.#) be a measurable space. A
vector measure is a o—additive set function u: 4 — X. Integration of functions f: E — [
with respect to vector measures is taken in the Bartle, Dunford and Schwartz {1] sense, and
the reader is referred to Dunford and Schwartz [4,1V.10] for the properties of this vector
integral.

Let (E;,#4,) and (E,, ) be two measurable spaccs. A vector bimeasure (bimeasure
when X = ) is a separately o—additive set function j5: M Mo — X, le, 4(-,B) and
B(A,-) are vector measures for all A € Ay, B e A

The proof of our result as well as our definition of integrability rely on the following



two lemmas. The first is classical and can be found in [4,p.323], while the second is in

[13,p.122].

Lemma 1. Let f: E — [F be p—integrable. Then, the set function {A) = J" fdp, Ac A isa
A

vector measure.

Lemma 2. Let f: E; — F be 3(-,B)-integrable for all B € ., Then the set functions
(A, ) Ay — X, B—H(AB) = JAf(-)dﬁ(- ,B) are vector measures for all A € M.

The vector measures'&ﬁg(-,B) are defined in a completely symmetrical way for
functions g: E2 ~—[F and B € My

We can now define J-integrability.

Definition 3. A pair of functions (f,g), f: E;, — F, g: E;, — F is said to be integrable with
respect to the vector bimeasure §: My x My — X (Fintegrable for short) if the following
two conditions hold:

(i) fis 8(-,B)-integrable for all B € My and g is B(A,- )-integrable for all A € A

(ii) fis ﬁg(-,B)—integrable for all B € A4, and g is fﬁ(A,-)wint;egrablt—:‘ for all A € 4.

For X = F this definition of integrability is stronger than that of Morse and Transuc.
For these authors, (f,g) is integrable if in (i) and (ii), A and B are replaced by E1 and E2

and if in addition

[ a8, By) = [ g(-)dghlE ). (1
By f Ey
It is also more restrictive than the strong integral of Niemi [10] or the B-integral of Ylinen
[13]. For both of them, a pair (f,g) is integrable if in (ii), A and B are respectively replaced

by B, and E, and if in addition (1) is satisfied. However, our definition is weaker than the

strict f—integral of Chang and Rao [2,3] (there is no additional Fubini condition).



With weaker definitions than Definition 3, the Fubini type property (1) cannot be
obtained as a consequence of f-integrability (see [9], [13]). Nevertheless, by trading off
these weaker definitions with the natural integrability conditions of definition 3, not only

(1}, but also the following stronger result holds.

Theorem 4. If the pair (f,g) is f-integrable, then for all A € A, B € A,

JA f(')dﬁg('?B) = IB g(')dffg(A,')s (2)

and the common value int (2) can thus be denoted by J' J' fgdp.
' A'B

Proof. Let (f,g) be S-integrable. If both f and g are simple functions, then (2) is trivial.
Let f and g be bounded (f and g are measurable since integrable in the Bartle, Dunford and
Schwartz sense). Then f (resp. g) is the uniform limit of a sequence {f} (resp. {g,}) of
simple functions such that |nt <M =sup [f] (resp. |g | <N =sup |g]). Since (fg)is
Fintegrable, it follows by the dominated convergence theorem for vector measures (see

{4,p.328]) that,
[ fC08B) = 1im [ [()F(B) = Tim [ g()dg HA),  (2)
where for all C € ), 7
nir; \ £.(-)dB(-.C) = jA [{(-)dp(-,C) = (B(A,C). (3)

Furthermore, [l¢ A(A,-)Il(B) < M ||B{[(A,B), where [|-|i(-,-) is the Frechet (or semi—)
n

variation of the corresponding vector {(bi—)measure (see [4,I1V.10], [13]) and || (JA(B) <
M {|8ll(A,B). But,

1[0 ) = [ a3 A ST g IHA) = g, )]

+ | Ingm(')dfﬁ(Ar) - ngm(')dfnﬂ(A,')l |



+ IIJ £ df BAs-) - ng(')dfnﬁ(A,')ll

where |]-]] is the norm on X. Now, the first and the third term on the right hand side of
the above inequality arc both bounded by sup lgm—g| HAII(A,B). By (3) the middle term
converges to zero as n — + . Hence, since {g m} converges to g uniformly, the left hand
side converges to zero, and using (2'), equality in (2) remains valid.

Next, let f be bounded and let B = B n {n < [g] < n+1}. Then,

jB g(+)dB(A,)= T jB g(-)dpB(A,+)  (Lemma 1)

n=0 n
- E f, ()48,(-B,) (g s bounded on B,)
= JA f(-)dﬂg(-,B) (Lemma 2).

If f is not bounded, then with A, =An{n < |f] <nt+l}, we have

| JA f(-)dB,( - B) -z fAnf(-)dﬁg(-,B) (Lemma 1)

4]
=X  g(-)d(A,,)  (fis bounded on Al)

n=>0
= I (+)dpB(A, (Lemma 2),

and the result is obtained. -

As given by Definition 3 and Theorem 4, the vector bimeasure integral shares
familiar properties, such as bilinearity in (f,g), dominated convergence, etc. It is also
absolute, namely, for measurable functions f and g, the f-integrability of (f,g) and of
(1f],{gl) are equivalent. These, and further properties can be easily verified by using the

techniques and results of [13] and [2].



III. Applications to Stochastic Analysis

We now provide some simple applications of the results of the previous section which
are of particular interest in "stochastic integration".

Let (£2,8P) be a probability space and let Y: R — LP(Q,.8P), Z: R — LY, 8P),
1<p <+ 1/p + 1/q = 1, be two continuous and (weakly) harmonizable processes.
Equivalently, (see [4,VL.7], [L0] or [2]), let Y, = I'Reitydp(y) and Z, = J'meitzdv(z), t €R,
for two vector (random) measures u: &R) — LP(Q, 8P) and v: FR) — LIQ,.ZP), (FR)
is the Borel o-algebra of [R) Then, if & denotes expcctation, it readily follows from
Holder's inequality that (AiB) = &{u(A){B}}, is a bimeasure on AR) x FHR). We show
that for such bimeasures, i.e., "induced" by random measures, the S-integrability of pairs
of functions { and g: R — (, follows from the p—integrability of f and the r-integrability of

.

Theorem 5. If fis p—integrable and g is v-integrable, then the pair (f,g) is S-integrable,
and for all A, B € ZR),

5’{IAfd,uJBgdu} = j AIBfgdﬁ. ' (4)

Proof. Let M be a p—null set, i.e., M is a subset of a Borel set N such that ||u]|(N) =0
where [|g|(+) denotes the Frechet (or semi—) variation of u (see [4,IV.10], [13]). Then,
B(-,) = &{ - ()} and from Holder's inequality,

N ..
16 BYIN) = sup{|= _, & A(-B)N,)|; {N}Y'_, Borel partition of N, a € ¢, [as < 1}

<sup{iE_ a, NDILP )} I(BILapy
= IIMII(N)IIV(B)lqu(p)

=0,

and M is a f3(-,B)-null set for all B € FR). In fact, since ”V(B)”Lq(P) <Hleff(B) < |#I(R),



M is a 8(+,B) null set uniformly in B € &R).
Now, let f be g—integrable. Then there exists a sequence of simple functions fn - f

t-a.c., hence f(-,B)-a.e. for all B, and such that for all A € HR), {J'Afndu} is a Cauchy

sequence in LP(P}. To prove that for all B € FR), fis 4(-,B)-integrable, it is thus enough
to show that for all A, B € 4R}, {J f (-)dA(-,B)} is a Cauchy sequence in . But since
A

the fn's are simple functions, a direct a,pplication of Holder's inequality gives
[ Ca ) ()80 BY = |8 (6,1 )am STBT)

< ||jA(fn—fm)dﬂlle(P)IIV(B)l|-

Hence, f is (- ,B)-integrable for all B € &R}, and it follows that
J, TC)000B) = 1] € B . %)

Similarly, a »—null set is a §(A,-)-null set for all A € FR), and if g is v—integrable, it is
also B(A,-)-integrable for all A € #R), and for all A, B ¢ &R),

f, B, j g} (6

Hence, for g-integrable f and v-integrable g, (i) in Definition 3 is satisfied. Next, we show
that (ii) is also satisfied.

First, note that using Holder's inequality, it easily follows from (6) (resp. (5)) that a
p-null set (resp. a v—null set) is also a ﬁg(-,B)—null set for all B € AR) (resp. a
¢H(A,-)-null set for all A € AR)). Then, using (6) and since the f are simple functions, it
follows that JA(fn_fm)(')dﬂg("B) = g{IAfn_fm)d‘“ J'Bgdﬁ}. Again, by Hdlder's

inequality, the function f is ﬁg(‘,B)—integrable for all B € 4R), and j f(-)dﬁg(-,B) =
A



é’{f fd,uj gdv}, for all A, B € 4R). Similarly, g is Irﬁ(A,-) integrable for all A € 4R),
and OdeHA,) = &{{ fdu [ gdv}, for all A, B € BR). Hence (f,g) is f-integrable,
f A B

and so is (f,@ and (4) also follows. -

Let ’IY denote the closure in Lp(Q,ﬂP) of the linear span of the process Y, i.e., TY =
sp{ Y, :t €R}, and let ¥, be defined similarly. Let ’lp =sp{ (A): Ae FR)}. Then,
since the exponentials are dense in ’l,u’ it follows that ’lu = ¥y (this can be obtained by
simple modifications of the arguments in [12,p.40]), and similarly, ¥, =¥, Hence for any

U € ’)[Y, V e¥%,, we have U = J fdy, V = I gdv for some p—integrable f and some
’ R R
v-integrable g. It therefore follows from Theorem 5 that &{UV} = J J fedd. In
R-R
particular, we have Ry.(st) = &{YZ} = JI elSYe ltz y,z). Hence, the two

processes Y and 7 are jointly stationary, i.e., RYZ(s,t) = RYZ(s—t), if and only if 5(A,B) =
0 whenever A N B = ¢, in which case 3(-,-) uniquely determines é complex measure
supported on the diagonal of R x R.

It is readily verified (for example, by taking stationary processes X and Y such that
X =Y) that, in general, the converse of Theorem 5 does not hold. However, when p = q =
2 and p = v, Theorem 5 admits a partial converse. This recovers some results obtained,
with a different bimeasure integral, by Niemi [10,p.29] and by Chang and Rao [3,p.42]; and

also extends the classical stationary case.

Corollary 6. Let p=q = 2 and g = v. Then a pair (f,f) is J-integrable if and only if f is
p—integrable.

Proof. Theorem 5 gives the "if" part. For the "only if" part, we first show that a
B(-,B)-null set for all B € FR), is also a p-null set. For N € FR), |B|(N,B) =
SUP{IZ E 355( J)I} < SUP{Ej“)jl lEi aiﬂ(Ni,Bj)l} < sup{2j|bjl”ﬂ(',Bj)”(N)} =0,
when N is a §(-,B)-null set for all B € HR). Hence, taking B = N, we get ||,u”2(N) =



[16H(N,N) = 0.
Now, let (ff) be f-integrable. Then there exists a sequence {f,} of Borel simple

functions such that g(-,B)-ae., [f | < |f| and @im f = f Next, since () is
n-++oo

f-integrable, by Theorem 4, and by the dominated convergence theorem for (vector)

measures, we have for all B € 4R),

JBfofdﬁ= lim [ f()dB¢(-,B)= lim f(-)dfnﬁ(B,-)

n-++wo 7B n—++ow “B
= lim tim([ f ()dfﬁ(B d=1lim lim [ fnfmd[;’.
n-+w m-+w B n-+o m-++o “B'B

Similarily, J J ffdg= 1lim 1 imJ J fnfmdﬁ. Finally, since a j(-,B}-null set for
g B'B B

m-+w -+

all B € AR) is also a p—null set, we get

lim ‘@"|J du|
1n,m - o0

and f is g-integrable. ' n

In view of Theorem 4 as well as the above results, Definition 3 appears to provide (at
least in a stochastic framework) the appropriate conditions for bimeasure integration. In
fact, these results can be extended to matrix bimeasures, as shown in Houdré [5]. The

reader is also referred to Kluvanek [6] for illuminating remarks on bimeasures.
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