A VECTOR BIMEASURE INTEGRAL WITH SOME APPLICATIONS*

Christian Houdré

Center for Stochastic Processes Department of Statistics University of North Carolina Chapel Hill, NC 27599–3260

<u>Abstract</u> A Fubini type theorem is obtained for a class of vector bimeasure integrals. Some applications to the theory of harmonizable processes are also considered.

AMS (1980) subject classification: Primary 60G12; Secondary 28B05.

*Research Supported by AFOSR Grant No. F49620 85 C 0144.

I. <u>Introduction</u>

A theory of integration with respect to a bimeasure was initiated by Morse and Transue [7–9] and further developed by Thomas [11]. For these authors, bimeasures are continuous bilinear functionals on $C_c(E_1) \times C_c(E_2)$, where $C_c(E_i)$, i=1,2, are the usual spaces of continuous functions with compact support on the locally compact Hausdorff spaces E_i , i=1,2. More recently, motivated by the problem of finding a Fourier representation for the covariance of a second order process, this theory has been expanded by Niemi [10] and Chang and Rao [2,3]. Along the bilinear functional approach, the set function approach has now also been studied as well as the Banach valued case developed by Ylinen [13].

In the works mentioned above the authors consistently impose, in their definition of integrability, a Fubini type condition which cannot usually be bypassed. In Section II we show that, a suitable and natural restriction of the definition of integrability implies a stronger Fubini type property. In Section III, we study the spectral domain of harmonizable processes.

II. Vector Bimeasure Integration

Let X be a Banach space over $\mathbb{F} = \mathbb{R}$ or \mathbb{C} and let (E, \mathscr{K}) be a measurable space. A vector measure is a σ -additive set function μ : $\mathscr{K} \to X$. Integration of functions $f: E \to \mathbb{F}$ with respect to vector measures is taken in the Bartle, Dunford and Schwartz [1] sense, and the reader is referred to Dunford and Schwartz [4,IV.10] for the properties of this vector integral.

Let (E_1, \mathscr{M}_1) and (E_2, \mathscr{M}_2) be two measurable spaces. A *vector bimeasure* (bimeasure when $X = \mathbb{F}$) is a separately σ -additive set function β : $\mathscr{M}_1 \times \mathscr{M}_2 \longrightarrow X$, i.e., $\beta(\cdot, B)$ and $\beta(A, \cdot)$ are vector measures for all $A \in \mathscr{M}_1$, $B \in \mathscr{M}_2$.

The proof of our result as well as our definition of integrability rely on the following

two lemmas. The first is classical and can be found in [4,p.323], while the second is in [13,p.122].

<u>Lemma 1</u>. Let $f: E \to \mathbb{F}$ be μ -integrable. Then, the set function $\nu(A) = \int_A f d\mu$, $A \in \mathcal{M}$, is a vector measure.

The vector measures $\beta_g(\cdot, B)$ are defined in a completely symmetrical way for functions $g \colon E_2 \to \mathbb{F}$ and $B \in \mathcal{M}_2$.

We can now define β -integrability.

<u>Definition 3</u>. A pair of functions (f,g), $f: E_1 \to \mathbb{F}$, $g: E_2 \to \mathbb{F}$ is said to be integrable with respect to the vector bimeasure $\beta: \mathcal{M}_1 \times \mathcal{M}_2 \to X$ (β -integrable for short) if the following two conditions hold:

- (i) f is $\beta(\cdot, B)$ -integrable for all $B \in \mathcal{M}_2$ and g is $\beta(A, \cdot)$ -integrable for all $A \in \mathcal{M}_1$,
- (ii) f is $\beta_g(\cdot,B)$ -integrable for all $B\in \mathcal{M}_2$ and g is $_f\beta(A,\cdot)$ -integrable for all $A\in \mathcal{M}_1$.

For $X = \mathbb{F}$ this definition of integrability is stronger than that of Morse and Transue. For these authors, (f,g) is integrable if in (i) and (ii), A and B are replaced by E_1 and E_2 and if in addition

$$\int_{\mathcal{E}_1} \mathbf{f}(\cdot) d\beta_{\mathbf{g}}(\cdot, \mathcal{E}_2) = \int_{\mathcal{E}_2} \mathbf{g}(\cdot) d_{\mathbf{f}} \beta(\mathcal{E}_1, \cdot). \tag{1}$$

It is also more restrictive than the *strong integral* of Niemi [10] or the β -integral of Ylinen [13]. For both of them, a pair (f,g) is integrable if in (ii), A and B are respectively replaced by E_1 and E_2 and if in addition (1) is satisfied. However, our definition is weaker than the *strict* β -integral of Chang and Rao [2,3] (there is no additional Fubini condition).

With weaker definitions than Definition 3, the Fubini type property (1) cannot be obtained as a consequence of β -integrability (see [9], [13]). Nevertheless, by trading off these weaker definitions with the natural integrability conditions of definition 3, not only (1), but also the following stronger result holds.

Theorem 4. If the pair (f,g) is β -integrable, then for all $A \in \mathcal{M}_1$, $B \in \mathcal{M}_2$,

$$\int_{\mathbf{A}} \mathbf{f}(\cdot) d\beta_{\mathbf{g}}(\cdot, \mathbf{B}) = \int_{\mathbf{B}} \mathbf{g}(\cdot) d\mathbf{f} \beta(\mathbf{A}, \cdot), \tag{2}$$

and the common value in (2) can thus be denoted by $\int_{A} \int_{B} fgd\beta$.

<u>Proof.</u> Let (f,g) be β -integrable. If both f and g are simple functions, then (2) is trivial. Let f and g be bounded (f and g are measurable since integrable in the Bartle, Dunford and Schwartz sense). Then f (resp. g) is the uniform limit of a sequence $\{f_n\}$ (resp. $\{g_m\}$) of simple functions such that $|f_n| \leq M = \sup |f|$ (resp. $|g_m| \leq N = \sup |g|$). Since (f,g) is β -integrable, it follows by the dominated convergence theorem for vector measures (see [4,p.328]) that,

$$\int_{A} f(\cdot) d\beta_{g}(\cdot,B) = \lim_{n \to +\infty} \int_{A} f_{n}(\cdot) d\beta_{g}(\cdot,B) = \lim_{n \to +\infty} \int_{B} g(\cdot) df_{n} \beta(A,\cdot), \qquad (2')$$

where for all $C \in \mathcal{M}_2$,

$$\lim_{n\to+\infty} \int_{A} f_{n}(\cdot) d\beta(\cdot,C) = \int_{A} f(\cdot) d\beta(\cdot,C) = f^{\beta(A,C)}. \tag{3}$$

Furthermore, $\|f_n(A,\cdot)\|(B) \le M \|\beta\|(A,B)$, where $\|\cdot\|(\cdot,\cdot)$ is the Frechet (or semi-) variation of the corresponding vector (bi-)measure (see [4,IV.10], [13]) and $\|f(A,\cdot)\|(B) \le M \|\beta\|(A,B)$. But,

$$\begin{split} ||\int_{B} \mathbf{g}(\cdot) \mathbf{d}_{f} \beta(\mathbf{A}, \cdot) - \int_{B} \mathbf{g}(\cdot) \mathbf{d}_{f_{n}} \beta(\mathbf{A}, \cdot)|| &\leq ||\int_{B} \mathbf{g}(\cdot) \mathbf{d}_{f} \beta(\mathbf{A}, \cdot) - \int_{B} \mathbf{g}_{m}(\cdot) \mathbf{d}_{f} \beta(\mathbf{A}, \cdot)|| \\ &+ ||\int_{B} \mathbf{g}_{m}(\cdot) \mathbf{d}_{f} \beta(\mathbf{A}, \cdot) - \int_{B} \mathbf{g}_{m}(\cdot) \mathbf{d}_{f_{n}} \beta(\mathbf{A}, \cdot)||| \end{split}$$

$$+ \mid \mid \int_{B} \mathsf{g}_{m}(\cdot) \mathrm{d}_{f_{n}} \beta(\mathsf{A}, \cdot) - \int_{B} \mathsf{g}(\cdot) \mathrm{d}_{f_{n}} \beta(\mathsf{A}, \cdot) \mid \mid$$

where $|\cdot|$ is the norm on X. Now, the first and the third term on the right hand side of the above inequality are both bounded by $\sup |g_m-g| \|\beta\|(\Lambda,B)$. By (3) the middle term converges to zero as $n \to +\infty$. Hence, since $\{g_m\}$ converges to g uniformly, the left hand side converges to zero, and using (2'), equality in (2) remains valid.

Next, let f be bounded and let $B_n = B \cap \{n \leq \lfloor g \rfloor < n+1\}.$ Then,

$$\begin{split} \int_{B} g(\cdot) d_{f} \beta(A, \cdot) &= \sum_{n=0}^{\infty} \int_{B_{n}} g(\cdot) d_{f} \beta(A, \cdot) \quad \text{(Lemma 1)} \\ &= \sum_{n=0}^{\infty} \int_{A} f(\cdot) d\beta_{g}(\cdot, B_{n}) \quad \text{(g is bounded on B}_{n}) \\ &= \int_{A} f(\cdot) d\beta_{g}(\cdot, B) \quad \quad \text{(Lemma 2)}. \end{split}$$

If f is not bounded, then with $\boldsymbol{A}_n = \boldsymbol{A} \cap \{n \leq \lceil f \rceil < n+1\},$ we have

$$\begin{split} \int_{A} f(\cdot) \mathrm{d}\beta_{\mathrm{g}}(\cdot, \mathbf{B}) &= \sum_{n=0}^{\infty} \int_{A_{n}} f(\cdot) \mathrm{d}\beta_{\mathrm{g}}(\cdot, \mathbf{B}) & \text{(Lemma 1)} \\ &= \sum_{n=0}^{\infty} \int_{\mathbf{B}} g(\cdot) \mathrm{d}_{\mathrm{f}}\beta(\mathbf{A}_{\mathrm{n}}, \cdot) & \text{(f is bounded on \mathbf{A}_{n})} \\ &= \int_{\mathbf{B}} g(\cdot) \mathrm{d}_{\mathrm{f}}\beta(\mathbf{A}, \cdot) & \text{(Lemma 2),} \end{split}$$

and the result is obtained.

As given by Definition 3 and Theorem 4, the vector bimeasure integral shares familiar properties, such as bilinearity in (f,g), dominated convergence, etc. It is also absolute, namely, for measurable functions f and g, the β -integrability of (f,g) and of (|f|,|g|) are equivalent. These, and further properties can be easily verified by using the techniques and results of [13] and [2].

III. Applications to Stochastic Analysis

We now provide some simple applications of the results of the previous section which are of particular interest in "stochastic integration".

Let (Ω, \mathcal{B}, P) be a probability space and let $Y: \mathbb{R} \to L^p(\Omega, \mathcal{B}, P)$, $Z: \mathbb{R} \to L^q(\Omega, \mathcal{B}, P)$, $1 \le p < +\infty$, 1/p + 1/q = 1, be two continuous and (weakly) harmonizable processes. Equivalently, (see [4,VI.7], [10] or [2]), let $Y_t = \int_{\mathbb{R}} e^{ity} d\mu(y)$ and $Z_t = \int_{\mathbb{R}} e^{itz} d\nu(z)$, $t \in \mathbb{R}$, for two vector (random) measures μ : $\mathcal{B}(\mathbb{R}) \to L^p(\Omega, \mathcal{B}, P)$ and ν : $\mathcal{B}(\mathbb{R}) \to L^q(\Omega, \mathcal{B}, P)$, ($\mathcal{B}(\mathbb{R})$ is the Borel σ -algebra of \mathbb{R}). Then, if \mathcal{E} denotes expectation, it readily follows from Hölder's inequality that $\beta(A, B) = \mathcal{E}\{\mu(A)\overline{\nu(B)}\}$, is a bimeasure on $\mathcal{B}(\mathbb{R}) \times \mathcal{B}(\mathbb{R})$. We show that for such bimeasures, i.e., "induced" by random measures, the β -integrability of pairs of functions f and g: $\mathbb{R} \to \mathbb{C}$, follows from the μ -integrability of f and the ν -integrability of g.

Theorem 5. If f is μ -integrable and g is ν -integrable, then the pair (f,g) is β -integrable, and for all A, B $\in \mathcal{B}(\mathbb{R})$,

$$\mathcal{E}\{\int_{A} f d\mu \int_{B} g d\nu\} = \int_{A} \int_{B} f \overline{g} d\beta. \tag{4}$$

<u>Proof.</u> Let M be a μ -null set, i.e., M is a subset of a Borel set N such that $\|\mu\|(N) = 0$ where $\|\mu\|(\cdot)$ denotes the *Fréchet* (or *semi-*) variation of μ (see [4,IV.10], [13]). Then, $\beta(\cdot,\cdot) = \mathcal{E}\{\mu(\cdot)\overline{\nu(\cdot)}\}$ and from Hölder's inequality,

$$\begin{split} \|\beta(\,\cdot\,,\!B)\|(N) &= \sup\{\,|\,\Sigma_{\,\,i\,\,=1}^{\,N}\,\,a_{i}^{\,}\,\beta(\,\cdot\,,\!B)(N_{i}^{\,})\,|\,;\,\{N_{i}^{\,}\}_{\,\,i\,\,=1}^{\,N}\,\,Borel\,\,partition\,\,of\,\,N,\,\,a_{i}^{\,}\in\mathfrak{C},\,\,|\,a_{i}^{\,}|\,\,\leq\,1\}\\ &\leq \sup\{\|\Sigma_{\,\,i\,\,=1}^{\,N}\,\,a_{i}^{\,}\,\mu(N_{i}^{\,})\|_{L^{p}(P)}\}\,\,\|\nu(B)\|_{L^{q}(P)}\\ &= \|\mu\|(N)\|\nu(B)\|_{L^{q}(P)}\\ &= 0, \end{split}$$

 $\text{and }M\text{ is a }\beta(\,\cdot\,,B)-\text{null set for all }B\in\mathscr{B}(\mathbb{R}).\text{ In fact, since }\|\nu(B)\|_{L^{q}(P)}\leq\|\nu\|(B)\leq\|\nu\|(\mathbb{R}),$

M is a $\beta(\cdot, B)$ null set uniformly in $B \in \mathcal{B}(\mathbb{R})$.

Now, let f be μ -integrable. Then there exists a sequence of simple functions $f_n \to f$ μ -a.e., hence $\beta(\cdot,B)$ -a.e. for all B, and such that for all $A \in \mathcal{B}(\mathbb{R})$, $\{\int_A f_n d\mu\}$ is a Cauchy sequence in $L^p(P)$. To prove that for all $B \in \mathcal{B}(\mathbb{R})$, f is $\beta(\cdot,B)$ -integrable, it is thus enough to show that for all $A, B \in \mathcal{B}(\mathbb{R})$, $\{\int_A f_n(\cdot) d\beta(\cdot,B)\}$ is a Cauchy sequence in \mathfrak{C} . But since the f_n 's are simple functions, a direct application of Hölder's inequality gives

$$\begin{split} |\int_{A} (f_{n} - f_{m})(\cdot) \mathrm{d}\beta(\cdot, \mathbf{B})| &= |\mathcal{E}\{\int_{A} (f_{n} - f_{m}) \mathrm{d}\mu \, \overline{\nu(\mathbf{B})}\}| \\ & \leq \|\int_{A} (f_{n} - f_{m}) \mathrm{d}\mu\|_{L^{p}(P)} \|\nu(\mathbf{B})\|. \end{split}$$

Hence, f is $\beta(\cdot,B)$ -integrable for all $B \in \mathcal{B}(\mathbb{R})$, and it follows that

$$\int_{\mathbf{A}} \mathbf{f}(\cdot) d\beta(\cdot, \mathbf{B}) = \mathscr{E}\{\int_{\mathbf{A}} \mathbf{f} d\mu \, \overline{\nu(\mathbf{B})}\}. \tag{5}$$

Similarly, a ν -null set is a $\beta(A, \cdot)$ -null set for all $A \in \mathcal{B}(\mathbb{R})$, and if g is ν -integrable, it is also $\beta(A, \cdot)$ -integrable for all $A \in \mathcal{B}(\mathbb{R})$, and for all $A, B \in \mathcal{B}(\mathbb{R})$,

$$\int_{\mathbf{B}} \mathbf{g}(\cdot) \mathrm{d}\beta(\mathbf{A}, \cdot) = \mathcal{E}\{\mu(\mathbf{A}) \int_{\mathbf{B}} \mathbf{g} \mathrm{d}\overline{\nu}\}. \tag{6}$$

Hence, for μ -integrable f and ν -integrable g, (i) in Definition 3 is satisfied. Next, we show that (ii) is also satisfied.

First, note that using Hölder's inequality, it easily follows from (6) (resp. (5)) that a μ -null set (resp. a ν -null set) is also a $\beta_g(\cdot,B)$ -null set for all $B\in \mathscr{B}(\mathbb{R})$ (resp. a $f^\beta(A,\cdot)$ -null set for all $A\in \mathscr{B}(\mathbb{R})$). Then, using (6) and since the f_n are simple functions, it follows that $\int_A (f_n - f_m)(\cdot) d\beta_g(\cdot,B) = \mathscr{E}\{\int_A f_n - f_m) d\mu \int_B g d\overline{\nu}\}$. Again, by Hölder's inequality, the function f is $\beta_g(\cdot,B)$ -integrable for all $B\in \mathscr{B}(\mathbb{R}),$ and $\int_A f(\cdot) d\beta_g(\cdot,B) = f(x) d\beta_g(x) d$

 $\mathcal{E}\{\int_A f d\mu \int_B g d\overline{\nu}\}, \text{ for all } A, B \in \mathcal{B}(\mathbb{R}). \text{ Similarly, g is } {}_f\beta(A,\cdot) \text{ integrable for all } A \in \mathcal{B}(\mathbb{R}), \\ \text{and } \int_B g(\cdot) d_f\beta(A,\cdot) = \mathcal{E}\{\int_A f d\mu \int_B g d\overline{\nu}\}, \text{ for all } A, B \in \mathcal{B}(\mathbb{R}). \text{ Hence } (f,g) \text{ is } \beta\text{-integrable,} \\ \text{and so is } (f,\overline{g}) \text{ and } (4) \text{ also follows.}$

Let \mathcal{X}_Y denote the closure in $L^p(\Omega, \mathcal{B}, P)$ of the linear span of the process Y, i.e., $\mathcal{X}_Y = \overline{sp} \{ Y_t : t \in \mathbb{R} \}$, and let \mathcal{X}_Z be defined similarly. Let $\mathcal{X}_\mu = \overline{sp} \{ \mu(A) : A \in \mathcal{B}(\mathbb{R}) \}$. Then, since the exponentials are dense in \mathcal{X}_μ , it follows that $\mathcal{X}_\mu = \mathcal{X}_Y$ (this can be obtained by simple modifications of the arguments in [12,p.40]), and similarly, $\mathcal{X}_Z = \mathcal{X}_\nu$. Hence for any $U \in \mathcal{X}_Y$, $V \in \mathcal{X}_Z$, we have $U = \int_{\mathbb{R}} \mathrm{fd}\mu$, $V = \int_{\mathbb{R}} \mathrm{gd}\nu$ for some μ -integrable f and some ν -integrable g. It therefore follows from Theorem 5 that $\mathcal{S}\{UV\} = \int_{\mathbb{R}} \mathrm{fgd}\beta$. In particular, we have $\mathrm{R}_{YZ}(\mathrm{s},\mathrm{t}) = \mathcal{S}\{Y_sZ_t\} = \int_{\mathbb{R}} \mathrm{g}^{\mathrm{isy}} \mathrm{e}^{-\mathrm{i} t z} \mathrm{d}\beta(\mathrm{y},\mathrm{z})$. Hence, the two processes Y and Z are jointly stationary, i.e., $\mathrm{R}_{YZ}(\mathrm{s},\mathrm{t}) = \mathrm{R}_{YZ}(\mathrm{s}-\mathrm{t})$, if and only if $\beta(\mathrm{A},\mathrm{B}) = 0$ whenever $\mathrm{A} \cap \mathrm{B} = \mathrm{\phi}$, in which case $\beta(\cdot,\cdot)$ uniquely determines a complex measure supported on the diagonal of $\mathbb{R} \times \mathbb{R}$.

It is readily verified (for example, by taking stationary processes X and Y such that X = Y) that, in general, the converse of Theorem 5 does not hold. However, when p = q = 2 and $\mu = \nu$, Theorem 5 admits a partial converse. This recovers some results obtained, with a different bimeasure integral, by Niemi [10,p.29] and by Chang and Rao [3,p.42]; and also extends the classical stationary case.

Corollary 6. Let p = q = 2 and $\mu = \nu$. Then a pair (f,\overline{f}) is β -integrable if and only if f is μ -integrable.

Proof. Theorem 5 gives the "if" part. For the "only if" part, we first show that a $\beta(\cdot,B)$ -null set for all $B\in \mathcal{B}(\mathbb{R})$, is also a μ -null set. For $N\in \mathcal{B}(\mathbb{R})$, $\|\beta\|(N,B)=\sup\{|\Sigma_i \Sigma_j a_i\overline{b_j}\beta(N_i,B_j)|\} \le \sup\{\Sigma_j |b_j| \|\Sigma_i a_i\beta(N_i,B_j)|\} \le \sup\{\Sigma_j |b_j| \|\beta(\cdot,B_j)\|(N)\} = 0$, when N is a $\beta(\cdot,B)$ -null set for all $B\in \mathcal{B}(\mathbb{R})$. Hence, taking B=N, we get $\|\mu\|^2(N)=1$

 $\|\beta\|(N,N)=0.$

Now, let (f,f) be β -integrable. Then there exists a sequence $\{f_n\}$ of Borel simple functions such that $\beta(\cdot,B)$ -a.e., $|f_n| \leq |f|$ and $\lim_{n \to +\infty} f_n = f$. Next, since (f,f) is β -integrable, by Theorem 4, and by the dominated convergence theorem for (vector) measures, we have for all $B \in \mathcal{B}(\mathbb{R})$,

$$\begin{split} \int_{B}\!\!\int_{B}f\,\overline{f}d\beta &= \lim_{n\to +\infty}\int_{B}f_{n}(\cdot)d\beta\,_{\overline{f}}(\cdot,B) = \lim_{n\to +\infty}\int_{B}\overline{f}(\cdot)d_{f_{n}}\beta(B,\cdot) \\ &= \lim_{n\to +\infty}\lim_{m\to +\infty}\int_{B}\overline{f}_{m}(\cdot)d_{f_{n}}\beta(B,\cdot) = \lim_{n\to +\infty}\lim_{m\to +\infty}\int_{B}\int_{B}f_{n}\overline{f}_{m}d\beta. \end{split}$$

Similarily, $\int_{B}\int_{B}f\,\overline{f}d\beta=\lim_{m\to+\infty}\lim_{n\to+\infty}\int_{B}\int_{B}f_{n}\overline{f}_{m}d\beta. \text{ Finally, since a }\beta(\cdot,B)-\text{null set for all }B\in\mathscr{B}(\mathbb{R})\text{ is also a }\mu-\text{null set, we get}$

$$\lim_{n,m\to+\infty} \mathcal{E} |\int_{B} (f_n - f_m) d\mu|^2 = 0$$

and f is μ -integrable.

In view of Theorem 4 as well as the above results, Definition 3 appears to provide (at least in a stochastic framework) the appropriate conditions for bimeasure integration. In fact, these results can be extended to matrix bimeasures, as shown in Houdré [5]. The reader is also referred to Kluvánek [6] for illuminating remarks on bimeasures.

<u>Acknowledgement</u>. The author is grateful to Professor E. Thomas for his correspondence on bimeasures.

REFERENCES

- [1] Bartle, G., Dunford, N., and Schwartz, J.T. (1955). Weak compactness and vector measures. Canad. J. Math. 7, 289-305.
- [2] Chang, D. K., and Rao, M. M. (1983). Bimeasures and sampling theorems for weakly harmonizable processes". Stochastic Anal. Appl. 1, 21–55.
- [3] Chang, D. K., and Rao, M. M. (1986). Bimeasures and non-stationary processes. In Real and Stochastic Analysis (M. M. Rao, Ed.), 7-118, Wiley, New York.
- [4] Dunford, N., and Schwartz, J. T. (1958). Linear Operators, Part I: General Theory, Interscience, New York.
- [5] Houdré, C. (1987). Non-Stationary Processes, System Theory and Prediction. Ph. D. Thesis, McGill University, Montréal, Québec.
- [6] Kluvánek, I. (1981). Remarks on bimeasures. Proc. Amer. Math. Soc. 81, 233–239.
- [7] Morse, M., and Transue, W. (1949). Integral representations of bilinear functionals. *Proc. Nat. Acad. Sci. U.S.A.* 35, 136–143.
- [8] Morse, M., and Transue, W. (1955). C-bimeasures Λ and their superior integrals Λ *. Rend. Circ. Matem. Palermo (2) 4, 270-300.
- [9] Morse, M., and Transue, W. (1956). C-bimeasures Λ and their integral extensions. Ann. Math. 64, 480–504.
- [10] Niemi, H. (1975). Stochastic processes as Fourier transforms of stochastic measures. Ann. Acad. Sci. Fenn. Ser. AI 591, 1–47.
- [11] Thomas, E. (1970). L'intégration par rapport à une mesure de Radon vectorielle". Ann. Inst. Fourier (Grenoble) 20:2, 55–191.
- [12] Truong-Van, B. (1981). Une généralisation du théorème de Kolmogorov-Aronszajn. Processus V-bornés q-dimensionnels: domaine spectral et dilatations stationnaires. Ann. Inst. H. Poincare (1) XVII, 31-49.
- [13] Ylinen, K. (1978). On vector bimeasures. Ann. Acad. Pura Appl. (4) 117, 115–138.